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ABSTRACT 

A neural network-based algorithm was developed for the Weapon-Target 
Assignment Problem (WTAP) in Ballistic Missile Defense (BMD). An optimal 
assignment policy is one which allocates targets to weapon platforms such that 
the total expected leakage value of targets surviving the defense is minimized. This 
involves the minimization of a non-linear objective function subject to inequality 
constraints specifying the maximum number of interceptors available to each 
platform and the maximum number of interceptors allowed to be fired at each target 
as imposed by the Battle Management/Command Control and Communications 
(BM/C3) system. The algorithm consists of solving a system of ODEs trajectories 
and variables. Simulations of the algorithm on PC and VAX computers were carried 
out using a simple numerical scheme. In all the battle instances tested, the algorithm 
has proven to be stable and to converge to solutions very close to global optima. 
The time to achieve convergence was consistently less than the time constant of the 
network's processing elements (neurons). This implies that fast solutions can be 
realized if the algorithm is implemented in hardware circuits. Three series of battle 
scenarios are analyzed and discussed in this report. Input data and results axe 
presented in detail. The main advantage of this algorithm is that it can be adapted 
to either a special-purpose hardware circuit or a general-purpose concurrent machine 
to yield fast and accurate solutions to difficult decision problems. 

vii    Preceding page blank 



1. INTRODUCTION 

The process of effectively utilizing resources during a military engagement is 
known as battle management/command, control, and communications (BM/C3). 
One of the key tasks of BM/C3 is the optimal assignment of weapons to destroy 
targets. The effective engagement of incoming offensive intercontinental ballistic 
missiles (ICBM's) is one of the.Strategic Defense Initiative (SDI) BM/C3 system's 
main concerns. 

The overall system architecture of the SDI defense system is envisioned as one 
of several defensive layers corresponding to the different phases that occur in the 
trajectory of the attacking ICBMs. Those are the boost phase, the mid-course stage 
phase, and the reentry or terminal phase. Within each defensive layer, computers 
will use information gathered from sensors to detect, classify, and track potential 
targets. Using this information, the weapons will have to be assigned to destroy 
the offensive ICBM's before they detonate. The overall goal of the SDI BM/C3 

system is to minimize the expected leakage of warheads penetrating through each 
defensive layer. The number of weapon platforms, especially during the boost phase 
engagement, is usually very small in comparison with the number of attacking 
ICBMs. Thus, the BM/C3 system faces a resource optimization problem that must 
be solved accurately and rapidly. 

This paper presents a neural network-based algorithm for the optimization of 
the weapon-target assignment problem (WTAP). In this problem we deal with the so 
called one-sided many weapons on many targets battle where the defense must select 
a weapon assignment policy against a completely known offense attack. Although 
the real strategic defense problem is. dynamic, we have focused in this paper on an 
associated static formulation. This problem is NP-complete.1 

The static WTAP is defined as follows. There are M weapon platforms and 
K{> M) targets. Each weapon platform m has a number Bm of interceptors 
onboard. Each of the Bm interceptors is assumed to possess the same interception 
performance. Each target k is restricted by the BM/C3 system to be fired at by 
at least rt and no more than Rk interceptors. The probability that any single 
interceptor launched from weapon platform m destroys target k is denoted by 
Pfcm € [0,1] -the single-shot kill probability (SSKP). This probability depends on 
the characteristics of the interceptor and the target, e.g., maneuverability, guidance 
performance, target's shield, type of interceptor warhead, etc., and on the relative 
geometry between the weapon platform and the target. The expected leakage of 
target k being fired at by an interceptor from a weapon platform m is denoted by 
qifcm = 1 — Pkm • It is assumed that once the targets are detected and classified and 
their locations and velocity vectors are determined, a kill probability matrix Pjtm 

can be generated rapidly and made available to the local BM/C3. The objective is 



to find an optimal firing assignment matrix, for all weapon platforms to all targets, 
that minimizes the total expected leakage of targets subject to the constraints of 
availability and demand of interceptors. 

Situations similar to this static WTAP frequently occur in other areas such as 
operations research, and logistics management. These are generally known in the 
literature as transportation problems (TP).2'5 The TP is defined as follows: Given 
M sources and K destinations with source m capable of supplying amount Bm and 
destination k having demand dk (rk < dk < Rk), find the least cost transportation 
pattern from all the sources to all the destinations, when the cost of transporting a 
unit amount from m to k is qjkm. 

Many efficient algorithms have been described in the literature to solve 
this problem, e.g., network solution techniques, stepping-stone techniques, 
alternating basis methods and primal simplex algorithms,7"13 graph theory-based 
algorithms,6'14 and the Hungarian algorithm.15'16 An efficient algorithm for linear 
programming that can be applied directly to the standard transportation problem 
with equality constraints has been developed recently.17 This algorithm uses a 
primal-dual state variables approach and a sigmoid function which serves as a 
"barrier" function for the calculation of its primal variables. When the state 
variables are integers, the TP is usually referred to as the assignment problem 
(AP).2'5'9 

In contrast to the common TP and AP, the WTAP investigated here is a 
nonlinear combinatorial optimization problem. Its objective function consists of the 
product of expected leakage values of a target subjected to simultaneous multiple 
shots from different platforms. A method to solve the nonlinear WTAP has been 
presented recently.18. The underlying idea of this method is to iteratively apply 
linear approximations to solve the nonlinear problem. The linear approximation 
used by these authors is applied to the case where each target can receive at most 
one shot. A maximum marginal return (MMR) algorithm for the WTAP has been 
presented.19 The main idea behind this algorithm is to consistently select among 
all possible weapon-to-target assignments the one which has the greatest decrease 
in the expected surviving value of each target. The computational complexity of 
this algorithm has been shown to be 0(K + £og(K • ^=1Bm)). A nonlinear 
network flow (NNF) algorithm20 first relaxes the constraint concerning the total 
number of weapon platforms and solves the resulting convex nonlinear problem via 
a primal-dual method. After the optimal fractional assignments are determined 
for each single weapon platform, another algorithm must be utilized to determine 
near-optimal overall assignments. 

Our algorithm is based on the artificial neural networks approach21'22 combined 
with the Lagrange differential multipliers method.30 According to this approach 
the assignment variables of the problem are defined as the output signals of many 
interconnected processing elements. Energy functions are defined that describe the 



objective function and the constraints in terms of these variables. These functions 
are added to create the total energy to be minimized. A dynamic system is derived 
whose attractors are the desired constrained minima of the total energy. The 
outputs of the neurons at the equilibrium state are the desired optimal assignments. 
An analog (neural network) circuit can be constructed directly from the dynamic 
model. 

The main advantages of this algorithm are that it can provide answers to 
complex decision problems directly from a solution of a set of dynamical ODEs; the 
required programming is simple and straightforward; the algorithm is inherently 
parallel which allows for implementation on concurrent computation machines; and 
it can also be adopted to hardware to provide high speed processing. 

This paper is organized as follows. In Section 2 we describe the general dynamic 
WTAP and formulate the static problem that we investigate. The neural network 
formulation of the static problems is presented in Section 3, and in Section 4 the 
derivation of the algorithm is described. The question of convergence to equilibria 
and their stability is briefly addressed in Section 5. In Section 6 we present numerical 
results for three representative examples. We conclude with a short summary in 
Section 7. 



2. PROBLEM STATEMENT 

In order to provide a broader view of the scope of the problem to be solved 
we first discuss the dynamic WTAP and then focus on the solution of the static 
problem. We conjecture that good solutions for the dynamic problem can be 
obtained by combining fast solutions of successive static problems. 

The attack we consider consists of different types of ICBMs and/or their 
warheads which may be launched from various sites. All these targets are located 
within a finite domain in space referred to as the battle field. All necessary 
information regarding the type of the targets, their important structural details, and 
their position and velocity vectors is assumed to be provided to the local BM/C 
system by the global BM/C3 system. The local BM/C3 system then generates 
the SSKP matrix, Pkm(t) € [0,1], for every k € X and m € M. K is the set of 
integers which designate each target in the battle field at a given time t; i.e., K. 
= {1,2,...,#(*)} and M = {l,2,...,M(t)} is the set of integers designating the 
defense weapon platforms. The local BM/C3 system also assigns to each target k a 
value Sfc(t) that indicates its relative threat potential. Both Pfcm(t) and S*(t) are 
assumed to be updated in real time according to changes in the battle field. The 
SSKP is considered to be a property of the specified weapon platform-target pair 
only. A schematic description of the problem is depicted in Fig.l. 

Assume that at t=0, K(0) targets are approaching the battle field that is 
defended by an array of M(0) (M(0) < K(0)) weapon platforms.^ Each weapon, 
platform m is equipped with Bm(0) interceptors. Let Y(t) = {Ykm(t) € Z+}, 
k e £,m 6 M, where Ykm(t) is an assignment variable that describes the number 
of interceptors from platform m assigned to be fired at target k at the period of 
time At, between t' - At and t'. If the solution of the problem is calculated every 
time step At then the overall expected leakage value of targets over time t, is 

t    A'(«') M(t') 

EP(Y,t) = E E 5*C)  n C1 " JWO)W|,) • (!) 
t'=0  k=l m=l 

We assume that each assignment decision results in a statistically independent 
interception event.   No cumulative effects accrue so that, if Ykm(t') interceptors 

Y    (V) 
are assigned to target k, it will survive with a probability (qjfcm(i'))  *m       where 

qjfcm = 1 — Pkm- 

Let L(t') = [Lk(t') € {0,1}] denote the set of targets killed and/or targets that 
escaped the defense during the period of time Ai between t' - At and t', and let 
JV(t') = Nt(t') G {0,1} denote the set of new targets entering the battle field during 
that time period. Then the set of existing targets at time t is 
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*(*) = K(0) + £ £>(*') - $>*(*') (2) 
t'=o  t 

where 
t'   M(t') 

Lk(t') = min[l,YJ E ^-(5) 
s=0 m=l 



A target k that has been assigned to be fired at by platform m (i.e., Ykm(t) > 1) 
is considered either destroyed or having escaped the defense, i.e., L*(i) = 1. The 
number of interceptors onboard each platform m, at time t is 

t    K(t') 

Bm(t) = 5m(0) - E E **-»(*') • (3) 

f'=0  fc=l 

Problem No. 1 

The first problem we define is the dynamic WTAP. In this problem the local 
BM/C3 must determine the assignment matrix Y(t) such that the overall expected 
leakage value of the offensive targets over the time period t € [0,T],Ep(Y,T), is 
minimized, subject to: 

(a)A'(i)>0,    te[0,T}    ; 

(h)Bm(t)>0,   meM,    t€[0,T]    . 

This is a dynamic many weapon to many target assignment problem. It consists 
of a nonlinear objective function (1) and inequality constraints (a) and (b). Many 
uncertainties are involved in the estimation of the ICBMs flight trajectories and 
those of the interceptors, which cause uncertainty in the values of P*m(*) and Sfc(t). 
A closed mathematical solution to the dynamic WTAP appears very difficult, if not 
impossible. 

Problem No. 2 

Problem No. 2 is the deterministic assignment problem for a single period 
of time, At, ignoring system dynamics. This leads to a static WTAP, where M 
weapon platforms are committed to defense against K(>M) targets. Each platform 
m is equipped with Bm interceptors. We denote the assignment matrix in the static 
problem by 

Y = {YkrneZ+},   k€tC,meM. 

Again, the local BM/C3 system must determine Y such that the overall expected 
leakage value of the offensive targets 

KM _ 

Ep(Y) = J2SkU(l-Pk^Ykm (4) 
fc=l m=l 



is minimized, subject to: 

(i) Each target k G /C, is fired at by at least r*, but no more than Rk interceptors. 

(ii) Each weapon platform m E M., has Bm interceptors. 

(iii) The total number of interceptors launched is the maximum possible; i.e., the 
smaller number of either the total inventory of interceptors, ]Cm=i ^m, or the 

total number of interceptors approved by the BM/C3 system, Ylk=i -Rfc- 

In trying to solve Problem 2 using a neural network technique, we noticed that a 
solution for Problem 2 can be constructed from simultaneous solutions of a number 
of duplicates of a simpler problem (Problem No. 3) defined below. We will discuss 
this issue in Section 3. 

Problem No. 3 

This problem is the same as Problem 2 with an additional constraint (iv) 
restricting each weapon platform to shoot at a given target only one interceptor. 

We denote the assignment matrix in this problem by Y = {Ykm  € (0,1)}, 
k € fC,m G M., and determine Y such that the overall expected leakage value of 
offensive targets 

K M 

EpiX) = Y, Sk  n (1 - PkmYkm) (5) 
fc=l        m=l 

is minimized, subject to: constraints (i-iii) of problem 2 and 

(iv) Each weapon platform can shoot at a specified target only one interceptor, but 
can otherwise shoot at several other targets simultaneously. 

Combinatorial Complexity 

In order to address the degree of complexity of these problems we estimate the 
number of possible assignments when all the interceptors are assumed independent 
and distinct. We also assume that there are K targets and W = Kn + W0 

interceptors, and that each target is fired at with at least n and at most n + 1 
interceptors. The number of different possible assignments corresponding to this 
case is equal to the number of ways to fill K boxes with W different objects such 
that each box will contain either n or n + 1 objects. The number of ways to choose 
K objects among W such that each box contains only one object is n^rrW- The 

number of ways to fill each box with the second object is (w-2K)\ •> w^ ^e third 



object j}£l3%}p and so on. The remaining W0 objects can be distributed among 

the K boxes in fK?w0y. wa-Ys- Thus, the total number of assignments is 

W\          (W - K)\ (W-(n- 1)K)\ K\        = W\ K\ 
(W-K)\' (W-2K)\       (W-nK)\      ' (K - W0)\     W0\ ' (K - W0)\ 

In the special case where W0 = 0 (W = nK) we recover the well known result that 
the number of possible assignments is W!. 

In the WTAP the situation is different since the interceptors are divided into M 
different groups of Bm identical interceptors. If inequality constraints on the number 
of shots from each group m are imposed, the total number of possible assignments 
may exceed that of the previous example. 



3. NEURAL NETWORK REPRESENTATION 

To address Problem 3 within the framework of artificial neural networks, we 
adopt the Hopfield-Tank21'22 approach. We define, instead of the assignment 
variables Ykm of the previous section, new continuous assignment variables 

x(t) = {xkm(t)e(o,i)}, keic,meM 

in a state space Dx contained in Euclidean KM-space. Each Xkm represents the 
output signal of a neuron-like processing element. Its magnitude expresses the 
tendency to assign weapon platform m to shoot at target k. The time frame, i, 
is related to the neurons' dynamic response. It is not related to the time space of 
the dynamic physical problem we discussed previously. The states of the processing 
elements are denoted by U(t) = {Ukm(t) € %}^k € /C, m 6 M in state space Du. 

From its state through an activation function, the assignment variable is related 
to the neuron's state as follows: 

Xkm = 0.5[1 + tanh(Ukm/Uoo] (6) 

where U00 is a constant gain coefficient. 

Fig. 2. shows a weapon-target assignment matrix in which each row corresponds 
to a particular target and each column corresponds to a particular weapon platform. 
The elements of this matrix are the neurons' output signals, Xkm(t)- A solution 
of the problem is achieved whenever the state variables converge to an equilibrium 
state; (Ue,Xe), such that each neuron's output value is either zero or one, i.e., 

lim X     (i) — Xe    = / ^    ^ weapon m is assigned to shoot at target k /-N, 
i-.oo    fcmw km      | o    if weapon m is not assigned to shoot at target k   ^ ' 

The set of all xe is denoted by Qx. 

As an example, consider the case of 12 targets, and 4 weapon platforms, each 
equipped with Bm = 4 interceptors (Fig. 2). The BM/C3 system approves at most 
two shots at each one of the first five targets at each of the rest of the targets. A 
feasible solution for this problem would appear as a set Xe with values of "ones" 
and "zeroes" as shown in Fig. 2. 

The static WTAP, Problem 3, is formulated in terms of the neural network state 
variables, as follows: 
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Minimize 

subject to: 

K M 

Ep(X) = J2Sk   II  t1 - PkmXkrn) (8) 
k=\        m=l 

M 

z1(k)= [J2xkm   -rfc>0, ^ ke K (9) 
^m=l 

M      M \ 

ZliS) =        2-/   /Lt X-kmXkn 
m=l   n = 1 

-Rk(Rk-i)<o, v- keK (10) 

/ 

10 



K    K 

Zz{m)= [X;]Tx*mX*m] -Bm(Bm-l)<0,  V m € M (11) 

M     M \ /KM 

^fc=l m=l / \*=1 m=l 

JC     M 

Z5 = 5Z^X,m(l-X,m) = 0 (13) 
jk=l m=l 

Formalize (9) and (10) formalize constraint (i), and (11) and (12) constraints 
(ii) and (iii), respectively. Expression (13) represents an additional constraint which 
pertains to the specific algorithm we employ. It ensures that the final neuron outputs 
are 0 or 1. This formulation describes a constrained combinatorial optimization 
problem mapped onto an artificial neural network. 

The extension of the solution of this problem to that of Problem 2 can be 
obtained if we solve for Im duplicate target assignment matrices of the form of 
Fig. 2 simultaneously. Im is the maximum number of interceptors per platform 
to be fired at a given target. The inequality constraint related to the interceptors 
inventory, Bm, can be arbitrarily divided between the duplicate columns of each 
platform m.   ' ■* 

11 



4. ALGORITHM DESCRIPTION 

As indicated before, our approach to the solution of Problem 3 [Eqs. 
(8-13)] is based on a combination of Hopfield and Tank's21'22 neural 
network method and the Lagrange multipliers differential method suggested 
by Platt and Barr.30 This approach has been exploited previously by 
us to an NP- complete combinatorial optimization problem with equality 
constraints (the multiple traveling salesmen problem).29 According to this 
method we define energy functions, Ea(X) : Rn —► R ,a = 1,...,5 
that represent the constraints (9-13). For the inequality constraints 
(9-12) we introduce, auxiliary functions f2(Z) and f2(Z) that are continuously 
differentiate with respect to £,-,*' = 1,.. .,5.22,32 Consequently, the energy 
functions selected for constraints (9-13) are 

^i = ijE72[3i(*)] (14) 

E2 = \Y^f2[Z2{k)} (15) 

M 

E3=
i-YJ mUrn)] (16) 

m=l 

E, = \f*[ZA] (17) 

E5 = \zz (18) 

where   
f2(Z) = Z2H(Z)      ,      f2(Z) = Z2H(-Z) (19) 

and H(Z) is the Heaviside function. 

12 



The present constrained optimization problem can be converted to an 
unconstrained problem by introducing Lagrange multipliers, Aa, and by minimizing 
the total energy function 

5 

Epa(X, A) = EP(X) + J2 *«Ea(X)  . (20) 

Epa is a non-convex function, which does not necessarily have extremum points in 
Q,x- In order to overcome this difficulty we introduce a modified energy function 

where 

E(X,\) = EPQ(X,\) + EU(X) (21) 

KM K     M    n    fx n.      ivi j\      m     -     pXkm 

EU(X) = 2^ 2^ eu (Xkm) = 2J Z_j ~ I Ukm (Xkm)dXkn 
k=l m-1 Jfe=l m=l     "'° 

K     M    u 

= E E -T^lXkmtogXtn + (1 - Xkm)£og(l - Xkm)\ 
Jfc=l m=l 

(22) 

and r is a constant representing the characteristic time response of a neuron. Each 
(k,m) component, eu(Xkm) of EU(X) is a non-positive, continuous and bounded 
function of Xkm that vanishes Xkm = O and Xkm — 1, i-e., eu(o) = eu(l) = 0. It 
attains its maximum value at Xkm = §; i-e., eu (|) = -U00£ogr. At the desired 
constrained minimum state (Xe,\e) of Epa(X, A) in Q,x, the values of E(Xe,\e) 
and Epa (Xe, Ae) are identical since Eu (X

e) vanishes. 

We now seek a dynamical system of ordinary differential equations (ODEs) 
which represent the neural network, whose attractors are the desired constrained 
minima of E(X, A). Since we are dealing with a continuous state problem it seems 
logical to use the Lagrange multipliers differential approach29,30 as follows: 

dXkm /v     x    dE 
dt       ^""m'axtm 

= /*(**«) [Jf^ + JrH   ^  k€lC,m€M (23a) 
O&km        CAjtm 

^ = +^-^.^a-l,...,5 (236) 

13 



n(Xkm) is a modulation function that ensures that the trajectories of (23a) are in 
DT. It is selected as the derivative of the sigmoid activation function (6) 

»(Xkm) = ^ = [2UooCosh2{UkmlU00\-
x 

«t-'fcm 

(24) 

n(Xkm) is a non-negative function that vanishes for Xkm = O and Xkm — 1; (see 
Fig. 3). 
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Fig. 3.    Variation of the derivative of the sigmoid function versus the neuron 
state. 
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For computational simplicity we solve Eq. (23a) for the neuron's state U instead 
of X. Dividing both sides of Eq. (23a) by (A(X) we obtain: 

dUkm        rdEpa       dEu 
—if- = ~ OTT- + w—]»  ^  keJC,meM   . (25) 

dt CfAkm       O-X-km 

Note that dX/dt = /i(X)dU/dt and that n(X) never really vanishes since X G 
(0,1). 21>22 

Performing gradient ascent on A [Eq. (23b)], has been shown29'30 to be very 
effective in the solution of constrained optimization problems. It helps the network's 
states to "move" towards the surfaces of Dr, while keeping it stable during its entire 
time evolution. 

We have 

dEu deu        Ukm 

dXkm       dXkm 
(26) 

This   expression   adds   to   the   dynamic   equation   for   U(t)   [Eq.        (25)]   a 
damping   term   of   the   form   -Ukm/r.       This   term   "pushes"   the   network 
states   towards  a  stable  equilibria  (Ue,Xe)   where   all   U%m   tend   either  to 
+ oo   or  - oo and consequently X%m G fix, for every k G )C,m € M. 

Differentiating Ep, E\ — Er, and Eu with respect to Xkm and substituting into 
Eq. (25) we obtain 

dUkm Uk 
f- ~ {SkPkm  II (1 - Pkj^kj) + XlflfaW] dt 

M 

+ 2\2fl[Z2(k)]-YJXkj 
(27) 

K 

with 

+ 2A3/l[23(m)] -Y,Xtm + A4/1[Z4] 

+ 0.5A5 (1 - 2Xkm)},Vk efC,m£M 

fl{z) ~¥§ = ZH(Z) (28a) 

15 



and — 
71(2) - \^§ = ZF(-Z) (286) 

Equations (23b) and (27) define an autonomous system of ODEs. In general, for 
any given set of initial conditions, i.e., Ukm(0) and Aa(0), the system may approach 
a different limiting pattern (Ue,\e) as * -> ob. Since both the objective function, 
EP(X), and the constraints, E«(X), are non-convex, the problem may contain many 
focal minima. Therefore, for each given initial state (£7(0), A(0)), the solution may 
converge to a different local minimum. In Section 6 we discuss the question of how 
to choose initial conditions. 
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5. CONVERGENCE AND STABILITY 

Let Xe € Dx and Ae G R5 be an equilibrium for Eqs. (27) and (23b). It is 
called stable if, given any e > 0, there exists 8 > 0 such that | X(0) — Xe |< 8 
implies | X(t) — Xe \< e for all < > 0, i.e., any trajectory, Xkm(J) remains within an 
arbitrary small distance from -X"|m. The equilibrium is called asymptotically stable 
if there exists A > 0 such that | X(0)-Xe |< A implies that X(t) -* Xe as t -» oo, 
i.e., all trajectories starting close enough to Xe approach Xe asymptotically. 

The second (direct) method of Lyapunov32'33 provides a technique to test the 
stability of equilibria without solving the system of ODEs. Let V(x, A) : RKM+5 —► 
R be a continuously differentiable function in a neighborhood of (Xe, Ae), such that 

(a)V(X,A)>0   if   (X,A) = (Xe,Ae) 

(b) dV/dt < 0    in    RKM+5, then (Xe, Ae)  is stable. 

Furthermore, if also (c) dV/dt < 0 in RKM+5, then (Xe,Xe) is asymptotically 
stable. A function V satisfying (a) and (b) is called a Lyapunov function for the 
associated dynamical system. It should be mentioned, however, that there is no 
systematic method of finding Lyapunov functions. In spite of the widespread use of 
Lyapunov's method, it is still a matter of ingenuity and trial and error to find an 
appropriate Lyapunov function. 

Consider now the scalar function E(X,A) [Eq.(21)j. All its components are 
continuous, differentiable, non-negative functions except Eu which is non-positive. 
We add a complementary positive term to Eu so that we have a non-negative 
function V(X,A): 

KM 

—      I Ul-rr.dX.h.rr. 
(29) 

V(X, A) = E(X, A) + ]T JT - f UkmdXkm 
h—l m=l 

= E(X, A) + KMU00 log 2/2r > 0 

Since V(X,A) satisfies condition (a), it can serve as a candidate Lyapunov function. 
Its time derivative is: 

dl     i  i      , dX^ dUkm    dt    + 2-j dXa  dt {M) 

Substitution of dUjtm/d* from Eq. (25) and d\a/dt from Eq. (23b) into Eq. (30) 
yields 
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M     M 

S-EEafeW+£« (31) 

where the derivative dXfcm/dUfcm is given by Eq. (24). The first term in the RHS 
of Eq. (31) is clearly non-positive while the second term is always non-negative. A 
solution of the problem could be shown to be stable if the absolute value of the first 

term, V\ = - J2k=i J2m=i wt^ i^d?a~)    is always larger tnan tne second term 

V2 = £5
aasl 23*. 

Note, that the zeroes of the terms in the RHS of Eq. (31) the stationary points 
of the network [Eqs. (27) and (23b)]. 

dV/di was persistently negative in all the numerical experiments and became 
zero only when the solution converged to equilibrium. Typical behaviors of Vi, V2 

and dV/di are shown in Fig. 7 and Table 4 in the next section. In this example, 
Vi is significantly smaller than V2, and V2 converges to zero much faster than 
V\. This indicates that the network tends to "push" the state variables to fulfill the 
constraints before their driving forces, dUjkm/dt, converge to zero. No trend towards 
so called "strange attractors" or other kinds of instabilities has been detected during 
the extensive numerical simulations carried out. The solutions were always stable. 
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6. RESULTS AND DISCUSSION 

In this section we describe the performance of the present algorithm and analyze 
one representative battle scenario. We consider convergence, stability, optimality 
and the number n of time iterations required for the solution to converge to a stable 
equilibrium. 

The ratio between r and the product n * At, where At is the simulation time- 
step, provides a good criterion for adequacy of the present algorithm for real-time 
processing using special-purpose neurocomputers. 

Although many series of tests (battle scenarios) of problem sizes up to 50 x 
50 have been carried out, only three examples are described. The tests verify 
empirically the usefulness of the proposed algorithm and its performance. Several 
interesting algorithm design issues that arose during these tests were addressed. 

Computations were carried out using Euler's first order explicit scheme on a 
VAX 8600 and PC/XT: 

tf*T = UÜ + At [dUkm/dt }old (32a) 

The neurons' time constants were chosen equal to one (r = 1), and all the gain 
coefficients were chosen equal to 0.01 (U00 = 0.01). Initial values for the state 
variables were chosen, such that all the output signals were zero, X(0) = 0. This 
selection was found to be very effective for our algorithm. It enables the network to 
evolve rapidly towards local minima and reach good solutions. The time increments, 
At, were taken equal to either 10~3 or 10~4 s. As the dimensions of the problem 
increase, smaller values of At are recommended to prevent numerical instabilities. 
The criterion for convergence to an equilibrium was the absolute relative change 
of every output signal Xfcm and Lagrange multiplier Aa to be less than 10-4. An 
additional check of convergence to a feasible solution is carried out automatically 
when a convergence in time is detected. For the examples tested, convergence to a 
valid solution was always achieved. 

Example 1 

Consider a small-scale battle with K = 6 and M = 6. The SSKP matrix is given 
in Table 1. 
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Table 1. Input SSKP Matrix (P*m) 

K/M 1 2 3 4 5 6 

1 1.00 0.50 0.40 0.60 0.50 0.10 
2 0.60 0.40 0.90 0.70 0.30 0.20 
3 0.10 0.80 0.30 0.60 0.40 0.60 
4 0.50 0.30 0.70 0.20 0.10 0.40 
5 0.30 0.20 0.50 0.60 0.80 0.70 
6 0.70 0.60 0.40 0.10 0.30 0.20 

Three different scenarios of this battle are examined as described in Table 2. 
In all these instances rk is kept equal to one. The initial values of the Lagrange 
multipliers were chosen as follows: Ai(0) = 10.0, A2(0) = 1.0,A3(0) = 5.0, A4(0) = 
10.0, A5(0) = 0.2. The results of the optimal total expected leakage value of targets 
and number of time iterations required to converge to equilibria, are presented in 
the last two columns of Table 2. 

Table 2. Results of three (6 x 6) battle scenarios (rk = 1) 

No. 

Max # of 
interceptors 

approved 
against each 

target 

#of 
interceptors 

onboard 
each 

platform 

Max # of 
interceptors 

approved 
for this 
battle 

#of 
interceptors 
consumed 

Fractional 
expected 
leakage 
value 

#of 
time 

iterations 

Rfc BTO V> Ep/6 n 

1.1 l 1 6 6 0.267 80 

1.2 l 2 6 6 0.183 82 

1.3 2 2 12 11 0.078 245 
1 
l 

The final assignment maps of these scenarios are presented in Table 3. In 
all three cases, the results are optimal. Note, that in case (1.3) the algorithm 
recommends an assignment of only one interceptor against target 1 in spite of the 
fact that two are allowed by the BM/C3 system.   This decision is drawn since 
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Table 3. Final assignment maps for three (6 x 6) battle scenarios (r* = 1) 

-> m 

i 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 

K 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 

0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 

0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 

0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 

Scenario. 1.1 s< :enario 1.2 Scenario ' L.3 

Pn = 1.0 and no further reduction in the value of target 1 can be achieved. The 
algorithm has automatically decided to save one interceptor. The total expected 
leakage value is reduced in scenario 1.3 by 57% from that of scenario 1.2. 

In the case Rk = I = Bm for all k and m (scenario 1.1), the present WTAP 
reduces to the standard linear assignment problem (AP). AP's are commonly 
formulated in the literature by a linear cost function of the form 

K    M 

EX 
k=l m=l 

EAP{X) = ^2J2 Sk^ - Pkm)Xkm (33) 

This objective function can be used for the present algorithm. The present objective 
function given in Eq. (8), however, has been found to be far more effective. It 
possesses in its gradient term in Eq. (27) an inherent "sorting" mechanism that 
rapidly can sort out the assignment variables which are associated with the largest 
Pjfcm in each row k for all K rows. This "sorting" mechanism is a fundamental 
building block of the present optimization algorithm. 

The solution of the standard AP which minimizes E^p(X) for Sk = 1, ^ k 6 K 
and a given Pkm matrix, is also valid for the maximization of: 

K    M 

y J y J PkmXk, 
Jk=l m=l 
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Therefore, it can be used for APs which require, for instance, to maximize a total. 
Scenario 1.1 is equivalent to the AP described by Tank and Hopfield35 where the 
total rate of library work done by a group of six students is to be maximized. The 
SSKP matrix in Table 1 is equivalent to 1/10 of the matrix of rates of work of this 
reference. The assignment matrix obtained in Table 3 for this scenario is identical 
with the solution updated by Tank and Hopfield.35 

Typical behaviors of the trajectories of states for this example are shown in 
Figs. 4-6. Fig. 4 shows an oscillation of all the trajectories at the beginning of the 
evolution of the network for scenario 1.1. It takes the network about 20-25 iterations 
until the competition between the neurons is decided. Fig. 5 shows the trajectories 
of four neurons of the third column in the assignment matrix for scenario 1.2 Fig. 
6 shows trajectories of four neurons in row 5 in the assignment matrix for scenario 

1.3. 

The behavior of expressions Vi , V2 and dV/dt [Eq. (31)] is depicted in Fig. 7. 
Although this behavior pertains to scenario 1.3, it was found to represent the trend 
and behavior of these functions in all cases studied. In Table 4, numerical values 
which describe the time variation of these functions in scenario 1.1 are presented. 
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Scenario   1.3   :   Bm = 2      Rk=2 
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Fig. 6.   Trajectories of neuron output signals in a battle scenario 1.3. 
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Fig. 7.   Variation of Vi, V2, and dV/d? in time in scenario 1.3. 
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Table 4. Variation of V1? V2 and dV/dt in time, 
in scenario 1.1 

Iterations Vi v2 dV/dt 

0 -14.806 8.999 -5.807 

5 -1436.740 5.074 -1431.666 

10 -6357.580 7.239 -6350.341 

15 -20225.123 7.290 -20217.832 

20 -4577.508 1.641 -4575.867 

25 -516.672 1.728 -514.944 

30 -161.614 1.038 -160.576 

35 -136.408 • 0.702 -135.707 

40 -170.168 0.394 -169.774 

45 -111.967 0.134 -111.832 

50 -37.427 0.037 -37.390 

55 -13.562 0.012 -13.550 

60 -5.838 0.005 -5.833 

65 -2.984 0.002 -2.982 

70 -1.669 0.001 -1.668 

75 -0.982 0.001 -0.981 

80 0.000 0.000 0.000 

Example 2 

This example is presented to compare an algorithm with other well-known 
algorithms.   We consider a (10 x  10) AP which is defined as follows:   minimize 
F = Z)fc=i J2m=i QkmVkm subject to Yik=i Vkm = 1 and J2m=l Vkm = 1, for 
every k = 1,..., 10; m = 1,..., 10 and ykm G.{0,1}. The cost matrix [gfcm] is given 
in Table 5. 

This problem can be solved with the present algorithm where Pkm is replaced 
by (1 — qkm) and all the constraints' parameters rk,Rk and Bm are set equal 
to 1. Using the same initial conditions for Aa(0) as in Example 1, the optimal 
assignment sequence shown in Table 6 was obtained with the minimum cost of 
F = 2.9. Equilibrium was achieved after 81 time steps. The same minimum cost 
was obtained with the Hungarian method.15'16'40 However, different assignments 
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of equal total costs have resulted from this algorithm for weapons 1, 5, 6, and 9. 
Somewhat worse results have been obtained from two other methods, i.e., Least 
cost: F = 3.1 and Vogeal's approximation method: F = 3.3. Computations with 
all of these methods were fast due to the relatively small dimensions of the problem. 

Table 5. Cost Matrix [q*m] for Example 2 

k m 1 2 3 4 5 6 7 8 9 10 

1 .3 .4 .5 .6 .7 .8 .9 .7 .2 .3 

2 .2 .4 .4 .4 .5 .6 .7 .9 .7 .8 

3 .1 .3 .6 .4 .7 .8 .5 .9 .2 .3 

4 .3 .9 .8 .7 .5 .6 .3 .4 .2 .4 

5 .7 .8 .9 .9 .6 .5 .4 .7 .3 .5 

6 .4 .3 .2 .6 .4 .7 .5 .8 .6 .9 

7 .5 .2 .4 .4 .5 .5 .6 .6 .8 .8 

8 .3 .7 .4 .6 .5 .8 .7 .9 .7 .6 

9 .5 .4 .3 .5 .3 .4 .6 .5 .7 .4 

10 .3 .5 .5 .7 .9 .9 .9 .2 .7 .7 
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Table 6. Assignments Sequences for Example 2 

weapon m assigned to =>■  target k target k 
(Present algorithm)      (Hungarian method) 

10 1 1 

4 2 2 

1 3 8 

7 4 4 

9 5 3 

3 6 6 

2 7 7 

5 8 9 

6 9 5 

8 10 10  

Example 3 

In this example, several defense scenarios are analyzed. An array of M = 5 
weapon platforms is committed to encounter an attack of K = 25 ICBMs. The 
SSKP matrix provided for this battle is specified in Table 6. Two series of tests were 
performed (Table 7). For all tests the initial conditions for the Lagrange multipliers 
were: Ax(0) = 3.0, A2(0) = 1.0, A3(0) = 0.5, A4(0) = 10.0, and A5(0) = 0.2. 

In the first series, each target was approved to be encountered by only one 
interceptor (Rk = 1, k = 1 — 25), such that a total of 25 interceptors were approved 
for the whole battle. The results in Table 8 and Figure 8 show a slight reduction in 
the total expected leakage value from 0.200 to 0.194 when the number of interceptors 
per platform was increased from 6 to 9, because platform 3 had kill probabilities 
which were the largest for ten targets out of the twenty-five (see Table 7, column 3). 
Since nine interceptors were available on this platform, the algorithm successfully 
assigned them to the appropriate targets. 

In the second series, the defense array was allowed to encounter ten designated 
targets (say, k = 1 — 10) with two interceptors, while the other targets (k = 11 — 25) 
were encountered with one interceptor only. Here, a total of ten more (i.e., 35) 
interceptors were allowed for the battle in the last three scenarios. In the case 
where each platform was equipped with interceptors, a maximum number of 30 
interceptors were available. Therefore, two interceptors were approved for the first 
five targets only. 

29 



Table 7. Input Kill Probability Matrix 
[Pkm] for Example 3 

0.15 0.21 0.24 0.90 0.37 
0.48 0.38 0.54 0.24 0.09 
0.78 0.21 0.92 0.10 0.95 
0.71 0.65 0.00 0.65 0.06 
0.43 0.07 0.85 0.35 0.12 
0.62 0.24 0.49 0.36 0.40 
0.81 0.10 0.94 0.82 0.91 
0.23 0.10 0.32 0.55 0.28 
0.34 0.65 0.93 0.70 0.15 
0.22 0.26 0.90 0.76 0.36 
0.53 0.99 0.03 0.69 0.02 
0.65 0.55 0.38 0.87 0.90 
0.93 0.50 0.68 0.69 0.65 
0.33 0.04 0.91 0.52 0.63 
0.08 0.81 0.40 0.01 0.08 
0.18 0.36 0.21 0.97 0.03 
0.61 0.42 0.95 0.57 0.47 
0.59 0.02 0.06 0.51 0.75 
0.56 0.62 0.56 0.30 0.88 
0.03 0.79 0.35 0.77 0.55 
0.77 0.04 0.10 0.75 0.54 
0.29 0.35 0.79 0.67 0.71 
0.18 0.74 0.32 0.82 0.02 
0.43 0.30 0.41 0.57 0.20 
0.12 0.35 0.44 0.27 0.09 

Adding ten or five more interceptors has resulted in a reduction in the. total 
expected leakage value of targets by 9.5%-18.5%, as shown in Table 8. To provide 
some idea of the final assignments, the assignments of the last scenario of this series 
[Bm = 9) are marked by underlines which are superimposed to their associated 
Pfcm's in the SSKP matrix (Table 7). Examining the final assignments shows that 
the second shots were correctly selected for targets 1-10 such that both assignments 
in these rows are the largest ones. The detailed results of all other final assignments 
are not presented here because of lack of space, but can be provided upon request. 
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Table 8. Results of (25 x 5) Battle Scenarios in Example 3 

#of 
interceptors 

onboard each 
platform 

Rk = 1, k = 1 -25 <•>** = 2, fc = l-10;j Rk =l,fc = ll-25 

reduction in 
expected 
leakage 
value 

Fractional 
expected 
leakage 
value 

no. of 
time 

iterations 

max. no. of 
interceptors 
approved for 

the battle 

Fractional 
expected 
leakage 
value 

no. of 
time 

iterations 

max. no. of 
interceptors 
approved for 

the battle 

Bm Ep/25 n v» Ep/25 n V- % 

6 0.200 194 25 0.181 251 30 9.5 

7 0.197 139 25 0.174 467 35 11.7 

8 0.195 148 25 0.168 354 35 13.8 

9 0.194 113 25 0.158 337 35 18.5 

(*) In the case of Bm = 6, a total number of 30 interceptors are available for the battle. Therefore, Rk = 2 for 
targets k = 1 — 5 only. 
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7. SUMMARY AND CONCLUSIONS 

A neural network-based algorithm has developed for the solution of the static 
WTAP. The problem was defined as a minimization of the total expected leakage 
value of the targets surviving the defense. The minimization was subject to 
inequality constraints that specify the maximum number of interceptors available 
on each weapon platform and the minimum and maximum numbers of interceptors 
specified by the BM/C3 system required to encounter each target. 

The optimization algorithm involves the solution of a system of non-linear 
ODEs describing the dynamics of a neural network that represents the problem. 
The trajectories of this system are the desired optimal assignment variables of the 
problem. The algorithm contains an inherent decision scheme that provides fast 
and accurate results. The initial conditions of the neurons' outputs have chosen 
equal to zero. 

Many simulations with the present algorithm have shown stable behavior and 
convergence to feasible solutions. In all cases tested, the solutions were close to 
global optima. The standard assignment problem can be solved as a particular case 
of the present problem with rk = Rk = Bm = 1 for every k and m. Convergence 
times were always less than the time constant (r = 1) of the network's processing 
elements. 

The results presented in Section 6 show that the algorithm can be useful, not 
only for the solution of ad-hoc battle situations as required by the BM/C3 system, 
but also for pre-war planning and design studies. The effects of parameters such as 
the number of interceptors per platform, the number of shots at each target and 
the number of weapon platforms in the array, on the whole defense efficiency can 
be analyzed. These results can then be used to design an optimal defense array. In 
these kind of calculations, the computation speed is not a crucial requirement. 

The main advantage of this algorithm is that it can be implemented in fast 
analog circuits. It is estimated that with an implementation in hardware accurate 
solutions to large-scale WTAPs could be obtained in fractions of a second. 
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